mathlib documentation

non-mathlib.field_results

theorem mul_cancel (f : Type) [myfld f] (a b x : f) (x_ne_zero : x myfld.zero) :
a .* x = b .* xa = b
theorem add_cancel (f : Type) [myfld f] (a b x : f) :
a = bx .+ a = x .+ b
theorem add_cancel_inv (f : Type) [myfld f] (a b x : f) :
a .+ x = b .+ xa = b
theorem only_one_reciprocal (f : Type) [myfld f] (x : f) (a b : x myfld.zero) :
@[simp]
theorem mul_zero (f : Type) [myfld f] (x : f) :
@[simp]
theorem zero_mul (f : Type) [myfld f] (x : f) :
theorem only_one_reciprocal_alt (f : Type) [myfld f] (a b : f) (a_ne_zero : a myfld.zero) :
a .* b = myfld.oneb = myfld.reciprocal a a_ne_zero
@[simp]
theorem negate_zero_zero (f : Type) [myfld f] :
theorem negate_ne_zero (f : Type) [myfld f] (a : f) :
@[simp]
theorem recip_one_one (f : Type) [myfld f] (one_ne_zero : myfld.one myfld.zero) :
@[simp]
theorem double_negative (f : Type) [myfld f] (x : f) :
.- .- x = x
theorem reciprocal_ne_zero (f : Type) [myfld f] (x : f) (x_ne_zero : x myfld.zero) :
@[simp]
theorem double_reciprocal (f : Type) [myfld f] (x : f) (x_ne_zero : x myfld.zero) :
theorem double_reciprocal_inv (f : Type) [myfld f] (x : f) (x_ne_zero : x myfld.zero) :
@[simp]
theorem mul_negate (f : Type) [myfld f] (x y : f) :
.- x .* y = .- (x .* y)
@[simp]
theorem mul_negate_alt_simp (f : Type) [myfld f] (x y : f) :
x .* .- y = .- (x .* y)
theorem mul_negate_alt (f : Type) [myfld f] (x y : f) :
.- (x .* y) = x .* .- y
@[simp]
theorem add_negate (f : Type) [myfld f] (x y : f) :
.- (x .+ y) = .- x .+ .- y
theorem mul_nonzero (f : Type) [myfld f] (x y : f) (x_ne_zero : x myfld.zero) (y_ne_zero : y myfld.zero) :
@[simp]
theorem mul_two_reciprocals (f : Type) [myfld f] (x y : f) (x_ne_zero : x myfld.zero) (y_ne_zero : y myfld.zero) :
(myfld.reciprocal x x_ne_zero) .* (myfld.reciprocal y y_ne_zero) = myfld.reciprocal x .* y _
theorem factor_1_ne_zero (f : Type) [myfld f] (x y : f) :
theorem factor_2_ne_zero (f : Type) [myfld f] (x y : f) :
theorem split_reciprocal (f : Type) [myfld f] (x y : f) (xy_ne_zero : x .* y myfld.zero) :
theorem cancel_from_reciprocal (f : Type) [myfld f] (x y : f) (xy_ne_zero : x .* y myfld.zero) :
(myfld.reciprocal x .* y xy_ne_zero) .* x = myfld.reciprocal y _
theorem cancel_from_reciprocal_alt (f : Type) [myfld f] (x y : f) (xy_ne_zero : x .* y myfld.zero) :
x .* (myfld.reciprocal x .* y xy_ne_zero) = myfld.reciprocal y _
theorem add_two_reciprocals (f : Type) [myfld f] (x y : f) (x_ne_zero : x myfld.zero) (y_ne_zero : y myfld.zero) :
(myfld.reciprocal x x_ne_zero) .+ (myfld.reciprocal y y_ne_zero) = (x .+ y) .* (myfld.reciprocal x .* y _)
theorem only_one_negation (f : Type) [myfld f] (a b : f) :
a .+ b = myfld.zerob = .- a
theorem reciprocal_rewrite (f : Type) [myfld f] (x y : f) (equal_proof : x = y) (x_ne_zero : x myfld.zero) :
theorem assoc_tree (f : Type) [myfld f] (a b c d : f) :
a .+ b .+ (c .+ d) = a .+ (b .+ c .+ d)
theorem assoc_tree_mul (f : Type) [myfld f] (a b c d : f) :
a .* b .* (c .* d) = a .* (b .* c .* d)
theorem multiply_two_squares (f : Type) [myfld f] (a b : f) :
(square f a) .* (square f b) = square f a .* b
theorem mul_zero_by_reciprocal (f : Type) [myfld f] (a b : f) (a_ne_zero : a myfld.zero) :
theorem negate_zero (f : Type) [myfld f] (a : f) :
theorem negate_zero_a (f : Type) [myfld f] (a : f) :
theorem carry_term_across (f : Type) [myfld f] (a b x : f) :
a .+ x = b a = b .+ .- x
theorem carry_term_across_alt (f : Type) [myfld f] (a b : f) :
a = b myfld.zero = b .+ .- a
theorem mul_both_sides (f : Type) [myfld f] (a b x : f) (x_ne_zero : x myfld.zero) :
a = b a .* x = b .* x
theorem mul_both_sides_ne (f : Type) [myfld f] (a b x : f) :
a bx myfld.zeroa .* x b .* x
theorem carry_term_across_ne (f : Type) [myfld f] (a b x : f) :
a .+ x b a b .+ .- x
def cubed (f : Type) [myfld f] :
f → f
Equations
def cube_of_product (f : Type) [myfld f] (a b : f) :
cubed f a .* b = (cubed f a) .* (cubed f b)
def cube_nonzero (f : Type) [myfld f] (a : f) :
def cube_of_negative (f : Type) [myfld f] (a : f) :
cubed f .- a = .- (cubed f a)
def cube_of_reciprocal (f : Type) [myfld f] (a : f) (a_ne_zero : a myfld.zero) :
def factorized_cubic_expression (f : Type) [myfld f] (x a b c : f) :
f
Equations
theorem ne_diff_not_zero (f : Type) [myfld f] (x y : f) :
x yx .+ .- y myfld.zero
theorem multiply_out_cubic (f : Type) [myfld f] (x a b c : f) :
factorized_cubic_expression f x a b c = (cubed f x) .+ ( .- ((a .+ (b .+ c)) .* (x .* x)) .+ (x .* (a .* b .+ a .* c .+ b .* c) .+ .- (a .* (b .* c))))
theorem difference_of_squares (f : Type) [myfld f] (a b : f) :
(a .+ b) .* (a .+ .- b) = (square f a) .+ .- (square f b)
theorem mul_complex (f : Type) [myfld f] (a b c d : f) :
a .* (b .* c) .* (a .* (d .* c)) = a .* c .* (a .* c) .* (b .* d)
theorem subtract_ne (f : Type) [myfld f] (a b : f) :
a ba .+ .- b myfld.zero
theorem move_negation_ne (f : Type) [myfld f] (a b : f) :
a .- b .- a b
theorem move_across (f : Type) [myfld f] (a b : f) :
a .+ b = myfld.zero .- a = b
@[simp]
theorem square_negate (f : Type) [myfld f] (a : f) :
square f .- a = square f a
@[simp]
theorem cube_negate (f : Type) [myfld f] (a : f) :
cubed f .- a = .- (cubed f a)
theorem mul_two_squares (f : Type) [myfld f] (a b : f) :
(square f a) .* (square f b) = square f a .* b
theorem square_ne_zero (f : Type) [myfld f] (a : f) (a_ne_zero : a myfld.zero) :
theorem reciprocal_squared (f : Type) [myfld f] (a : f) (a_ne_zero : a myfld.zero) :