mathlib documentation

non-mathlib.roots

@[class]
structure fld_with_sqrt (f : Type) [myfld f] :
Type
theorem sqrt_eq (f : Type) [myfld f] [fld_with_sqrt f] (a b : f) :
a = b sqroot a = sqroot b
@[simp]
theorem sqrt_simp (f : Type) [myfld f] [fld_with_sqrt f] (a : f) :
sqroot a .* sqroot a = a
@[simp]
theorem sqrt_squared (f : Type) [myfld f] [fld_with_sqrt f] (a : f) :
theorem only_two_square_roots (f : Type) [myfld f] [fld_with_sqrt f] (x y : f) :
x sqroot yx .- sqroot ysquare f x y
theorem negative_sqrt (f : Type) [myfld f] [fld_with_sqrt f] (a : f) :
theorem sqrt_ne_zero (f : Type) [myfld f] [fld_with_sqrt f] (a : f) :
@[class]
structure fld_with_cube_root (f : Type) [myfld f] :
Type
theorem cubrt_eq (f : Type) [myfld f] [fld_with_cube_root f] (a b : f) :
theorem cubrt_cubed (f : Type) [myfld f] [fld_with_cube_root f] (a : f) :
def cube_root_of_unity (f : Type) [myfld f] [fld_not_char_two f] (rt_minus_three : f) (rt_proof : rt_minus_three .* rt_minus_three = .- (three f)) :
f
Equations
theorem cubrt_unity_correct (f : Type) [myfld f] [fld_not_char_two f] (rt_minus_three : f) (rt_proof : rt_minus_three .* rt_minus_three = .- (three f)) :
cubed f (cube_root_of_unity f rt_minus_three rt_proof) = myfld.one
def cubrt_unity_a (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] :
f
Equations
theorem cubrt_unity_nonzero (f : Type) [myfld f] [fld_not_char_two f] (rt_minus_three : f) (rt_proof : rt_minus_three .* rt_minus_three = .- (three f)) :
cube_root_of_unity f rt_minus_three rt_proof myfld.zero
theorem alt_cubrt_a_nonzero (f : Type) [myfld f] [fld_with_cube_root f] [fld_with_sqrt f] [fld_not_char_two f] (a : f) (a_ne_zero : a myfld.zero) :
theorem alt_cubrt_b_nonzero (f : Type) [myfld f] [fld_with_cube_root f] [fld_with_sqrt f] [fld_not_char_two f] (a : f) (a_ne_zero : a myfld.zero) :
theorem three_cubrts (f : Type) [myfld f] [fld_not_char_two f] [fld_with_cube_root f] (rt_minus_three a : f) (rt_proof : rt_minus_three .* rt_minus_three = .- (three f)) :
cubed f (fld_with_cube_root.cubrt a) .* (cube_root_of_unity f rt_minus_three rt_proof) = a
theorem no_other_cubrts_simple (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] [fld_with_cube_root f] (a1 x : f) :
x fld_with_cube_root.cubrt a1x alt_cubrt_a f a1x alt_cubrt_b f a1cubed f x a1
theorem alt_cubrt_a_correct (f : Type) [myfld f] [fld_with_cube_root f] [fld_with_sqrt f] [fld_not_char_two f] (a : f) :
cubed f (alt_cubrt_a f a) = a
theorem alt_cubrt_b_correct (f : Type) [myfld f] [fld_with_cube_root f] [fld_with_sqrt f] [fld_not_char_two f] (a : f) :
cubed f (alt_cubrt_b f a) = a